48 research outputs found

    Precision Target Guide Strategy for Applying SERS into Environmental Monitoring

    Get PDF
    Surface enhanced Raman spectroscopy (SERS) is a promising analytical technique that exhibits various applications in trace detection and identification. When it is applied into environmental monitoring, we should concern several key points to improve detection sensitivity and selectivity for the detection in complex matrix. In this tutorial review, we mainly focus on the strategies for improving the use of SERS into environmental application. The strategies are summarized for enhancing the ability of the substrate to selectively capture specific targets, and for achieving separation and concentration of the analytes from the matrix and the assembly structures for multiple phase detection. We have also introduced several newly developed detection systems using portable instruments and miniaturized devices that are more suitable for infield applications. In addition, we discuss the present challenges that hide it from wide real application and give the outlook for the future development in applying SERS in environmental monitoring

    Immobilization of Horseradish Peroxidase on NH2-Modified Magnetic Fe3O4/SiO2 Particles and Its Application in Removal of 2,4-Dichlorophenol

    No full text
    Fe3O4 nanoparticles were prepared by a co-precipitation method with the assistance of ultrasound irradiation, and then coated with silica generated by hydrolysis and condensation of tetraethoxysilane. The silica-coated Fe3O4 nanoparticles were further modified with 3-aminopropyltriethoxysilane, resulting in anchoring of primary amine groups on the surface of the particles. Horseradish peroxidase (HRP) was then immobilized on the magnetic core-shell particles by using glutaraldehyde as a crosslinking agent. Immobilization conditions were optimized to obtain the highest relative activity of the immobilized enzyme. It was found the durability of the immobilized enzyme to heating and pH variation were improved in comparison with free HRP. The apparent Michaelis constants of the immobilized HRP and free HRP with substrate were compared, showing that the enzyme activity of the immobilized HRP was close to that of free HRP. The HRP immobilized particles, as an enzyme catalyst, were used to activate H2O2 for degrading 2,4-dichlorophenol. The rapid degradation of 2,4-dichlorophenol indicated that the immobilized enzyme has potential applications for removing organic pollutants

    Electrochemical Formation of Polyaniline in Selenic Acid

    No full text

    Influence of Duty Ratio and Current Mode on Robot 316L Stainless Steel Arc Additive Manufacturing

    No full text
    Wire and arc additive manufacturing (WAAM) is usually for fabricating components due to its low equipment cost, high material utilization rate and cladding efficiency. However, its applications are limited by the large heat input decided by process parameters. Here, four 50-layer stainless steel parts with double-pulse and single-pulse metal inert gas (MIG) welding modes were deposited, and the effect of different duty ratios and current modes on morphology, microstructure, and performance was analyzed. The results demonstrate that the low frequency of the double-pulse had the effect of stirring the molten pool; therefore, the double-pulse mode parts presented a bigger width and smaller height, finer microstructure and better properties than the single-pulse mode. Furthermore, increasing the duty ratio from 35% to 65% enlarged the heat input, which then decreased the specimen height, increased the width, and decreased the hardness and the tensile strength

    Catalytic Oxidation of Phenol and 2,4-Dichlorophenol by Using Horseradish Peroxidase Immobilized on Graphene Oxide/Fe3O4

    No full text
    Graphene oxide/Fe3O4 (GO/Fe3O4) nanoparticles were synthesized by an ultrasonic-assisted reverse co-precipitation method, and then horseradish peroxidase (HRP) was covalently immobilized onto GO/Fe3O4 with 1-ethyl-3-(3-dimethyaminopropyl)carbodiimide (EDC) as a cross-linking agent. In order to enhance the phenol removal efficiency and prevent the inactivation of the enzyme, the polyethylene glycol with highly hydrophilicity was added in this reaction, because the adsorption capacity for the polymer by degradation was stronger than the HRP. The results showed that the immobilized enzyme removed over 95% of phenol from aqueous solution. The catalytic condition was extensively optimized among the range of pH, mass ratio of PEG/phenol as well as initial concentration of immobilized enzyme and H2O2. The HRP immobilized on GO/Fe3O4 composite could be easily separated under a magnetic field from the reaction solution and reused

    Molecular imprinting for removing highly toxic organic pollutants

    No full text
    Molecular imprinting technology allows synthesis of polymers with specific recognition ability towards target pollutants, which show potential to selectively remove Highly Toxic Organic Pollutants (HTOPs) in the presence of common organic matrices that are thousands of times more abundant than the targets. This feature article summarizes the current development of molecular imprinting for removing HTOPs from polluted water, with a special emphasis on the application of molecularly imprinted polymers to improve the efficiency of photocatalytic and biological degradation of HTOPs in wastewater

    Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate

    No full text
    Sibutramine hydrochloride (SH) is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS) is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA) to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0–150.0 µg·mL–1, and a detection limit low to 3.0 µg·mL−1. It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications

    Parameters Optimization of Auxiliary Gas Process for Double-Wire SS316L Stainless Steel Arc Additive Manufacturing

    No full text
    Serious heat accumulation limits the further efficiency and application in additive manufacturing (AM). This study accordingly proposed a double-wire SS316L stainless steel arc AM with a two-direction auxiliary gas process to research the effect of three parameters, such as auxiliary gas nozzle angle, auxiliary gas flow rate and nozzle-to-substrate distance on depositions, then based on the Box–Behnken Design response surface, a regression equation between three parameters and the total score were established to optimized parameters by an evaluation system. The results showed that samples with nozzle angle of 30° had poor morphology but good properties, and increasing gas flow or decreasing distance would enhance the airflow strength and stiffness, then strongly stir the molten pool and resist the interference. Then a diverse combination of auxiliary process parameters had different influences on the morphology and properties, and an interactive effect on the comprehensive score. Ultimately the optimal auxiliary gas process parameters were 17.4°, 25 L/min and 10.44 mm, which not only bettered the morphology, but refined the grains and improved the properties due to the stirring and cooling effect of the auxiliary gas, which provides a feasible way for quality and efficiency improvements in arc additive manufacturing
    corecore